### Preview lessons, content and tests

#### Computer Science & Programming solved. All in one platform.

1. To trial the platform and take tests, please take a few seconds to SIGN UP and SET UP FREE.

2. Searching for something specific? See our text overview of all tests. Scroll right for levels, and lists.

3. Student and Teacher User Guides |  Schemes of Work |   Real Teacher use Videos |

Join 36000+ teachers and students using TTIO.

### Range and Precision

If you use more bits in the exponent, the range can be greater. If, however, more bits are used for the mantissa, the precision of the number can be increased.

Interesting note: No matter how many digits you’re willing to write down, the result will never be exactly 1/3, but will be an increasingly better approximation of 1/3.

In the same way, no matter how many base 2 digits you’re willing to use, the decimal value 0.1 cannot be represented exactly as a base 2 fraction. In base 2, 1/10 is the infinitely repeating fraction

```0.0001100110011001100110011001100110011001100110011...
```

Stop at any finite number of bits, and you get an approximation. On most machines today, floats are approximated using a binary fraction with the numerator using the first 53 bits starting with the most significant bit and with the denominator as a power of two. On most machines, if Python were to print the true decimal value of the binary approximation stored for 0.1, it would have to display>>>

```>>> 0.1
0.1000000000000000055511151231257827021181583404541015625```

### Suggested Video

www.teachyourselfpython.com