Preview

10 - Simplifying Statements #1

 1. Simplify the following statement: ~(A * B) * (~A + B) * (~B + B)
Note: + = OR; * = AND; ~ = NOT

  A

  A+B

  ~A

  B

 2. We can get from ~(A * B) * (~A + B) to (~A + ~B) * (~A + B) using which of the following laws:

  Associative

  Distributive

  Commutative

  Double Negation

 3. A * B = B * A describes the ________________ law

  Double Negation

  Commutative

  Distributive

  Associative

 4. The following expression could be simplified to: (A+B)*C+(B+A)*C*(B+B) ……

  B+C

   (A + B) * C

  A

  A+B

 5. Simplify the following expression: A*(A+B)*C*(B+C)*C*(B+C)

  A * C

  A

  A+C

  B

 6. Simplify the following expression: A*(A+B)*C*(B+C)*C*(B+C)+~(~C)

  C

  B

  A

  A+B

 7. Simplify the following expression: A+B+C*(A+B)

  A

  B+C

  A+B

   (A + B) * C

 8. Simplify the following expression: A*(A+B+C+A+B+A)

  A

  C

  B

  A+B

 9. A*(A+B+C+D) can be reduced to:

  C

  A

  B

  B+C+D

 10. ~A+ A + ~B + B can be reduced to:

  FALSE (0)

  A

  TRUE (1)

  ~B